II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER - 2022

NUMERICAL AND STATISTICAL METHODS (Common for CIVIL, ME)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

								BL	СО	Max. Marks
UNIT-I										
1	a)	Find a rea	x = 1.2	L3	CO2	7 M				
		by regula falsi method correct to three decimal places.								
	b)	b) From the following table, estimate the number								7 M
	of students who obtained marks between 40									
	and 45.									
		Marks	30-40	40-50	50-60	60-70	70-80			
		No. of	31	42	51	35	31			
		Students								
OR										
2	a) Apply Newton-Raphson's method, find a real							L3	CO2	7 M
	root of the equation $3x = \cos x + 1$ correct to									
	two decimal places.									
	b) Estimate f(3) for the following data:							L4	CO4	7 M
		<i>x</i> :	0	1	2	2	5			
		f(<i>x</i>):	2	3	12	2	147			
					Dece 1 of	•				

					TT	NIT-II					
3 a) Find the first and second derivatives of the									L3	CO2	7 M
5	<i>a)</i>	function tabulated below, at the point $x=1$							LJ		/ 11/1
		1010000000000000000000000000000000000	1	1.2	1.4	1.6	1.8	2			
		<u>л.</u> у:	0		0.544						
	b)	~	-		e of y				L4	CO4	7 M
	0)	modifi		451118	2.		,				
		$\frac{dy}{dy} = y$									
		$\frac{dx}{dx} = y$	$e^{+} e^{-}$,								
OR											
4	a)	Using	Rung	ge-Kutt	a meth	od of	fourth	order,	L3	CO2	7 M
		colvo	$\frac{dy}{dx} = x$	+ v	th x(0)	-1 of \mathbf{v} -	-0.2				
		solve $\frac{dy}{dx} = x + y$ with y(0)=1 at x=0.2.									
	b)	Evaluate the integral $\int_{0}^{1} \frac{dx}{1+x^{2}}$ by using								CO4	7 M
		Evalua	ate the								
		Simne	on's 3								
Simpson's $\frac{3}{8}$ rule.											
					TI	NIT-III	[
5	a)	The p	robabi	litv de				andom	L3	CO3	7 M
		The probability density function of a random variate X is									
		X: 0 1 2 3 4 5 6									
		P(X): k 3k 5k 7k 9k 11k 13k									
		(i) Find the value k,									
		(ii) Find $P(X < 4)$, $P(X \ge 5)$, $P(3 < X \le 6)$.									
	b)) In a certain factory turning out razor blades							L4	CO5	7 M
		there is a small chance of 0.002 for any blade									
		to be defective. The blades are supplied in									
		packets of 10, use Poisson distribution to									
		calculate the approximate number of packets containing no defective, one defective blades									
			_								
		respec	•	10,000							
		packet	ts.								

		OR							
6	a)	Let <i>X</i> is a continuous random variable with	L3	CO3	7 M				
		probability density function given by							
		$f(x) = kx (0 \le x < 2)$							
		$= 2k (2 \le x < 4)$							
		$= -kx + 6k$ $(4 \le x < 6).$							
		Find <i>k</i> and mean, variance of <i>X</i> .							
	b)	In a normal distribution 31% of the item are	L4	CO5	7 M				
		under 45 and 8% are over 64. Find mean and							
		standard deviation of the distribution.							
		τινιτή τα/							
7	a)	UNIT-IV A sample of 900 members is found to have a	13	CO3	7 M				
'	<i>a)</i>	mean of 3.4 <i>cm</i> . Can it be reasonably regarded	L3	005	/ 111				
		as a truly random sample from a large							
		population with mean 3.25 <i>cm</i> and S.D.							
		1.61 <i>cm</i> ?							
	b)	A sample of height of 6400 soldiers has a	L4	CO5	7 M				
		mean of 67.85 inches and standard deviation of							
		2.56 inches while a simple sample of heights							
		of 1600 sailors has a mean of 68.55 inches and							
		a standard deviation of 2.52 inches. Do the							
		data indicate that the sailors are on the average taller than soldiers?							
OR									
8	a)	A sample of 400 items is taken from a	L3	CO3	7 M				
		population whose standard deviation is 10. The							
		mean of sample is 40.Test whether the sample							
		has come from a population with mean 38 also							
		calculate 95% confidence interval for the							
	1 \	population.	T 4						
	b)	Ĩ	L4	CO5	7 M				
		were asked whether they would like to have							

		flyover near their residence 200 men and 325 women were in flyover of proposal. Test the hypothesis that the proportion of men and women in flyover of proposal are same at 5%										
		level.										
	UNIT-V											
9	a)	A machinist is making engine parts with axle diameter of 0.7inch. A random sample of 10 parts shows mean diameter 0.742 inch with a standard deviation 0.04 inch. On the basis of this sample, would you say that the work is inferior?	L3	CO3	7 M							
	b)	The heights of 10 males of a given locality are found to be 70, 67, 62, 68, 61, 68, 70, 64, 64, 66 inches. Is it reasonable to believe that the average height is greater than 64 inches? Test at 5% significance level.	L4	CO5	7 M							
		OR										
10	a)	Two horses A and B were tested according to the time(in seconds) to run a particular race with the following results:HorseA:283032332934HorseB:293030242729Test whether you can discriminate between two horses at the means 0.05 level?	L3	CO3	7 M							
	b)		L4	CO5	7 M							